Joint Non-parametric Estimation of Mean and Auto-Covariances for Gaussian Processes

Tatyana Krivobokova, Paulo Serra (Korresp. Autor*in), Francisco Rosales, Karolina Klockmann

Veröffentlichungen: Beitrag in FachzeitschriftArtikelPeer Reviewed

Abstract

Gaussian processes that can be decomposed into a smooth mean function and a stationary autocorrelated noise process are considered and a fully automatic nonparametric method to simultaneous estimation of mean and auto-covariance functions of such processes is developed. The proposed empirical Bayes approach is data-driven, numerically efficient, and allows for the construction of confidence sets for the mean function. Performance is demonstrated in simulations and real data analysis. The method is implemented in the R package eBsc. 1

OriginalspracheEnglisch
Aufsatznummer107519
Seitenumfang17
FachzeitschriftComputational Statistics and Data Analysis
Jahrgang173
Frühes Online-Datum9 Mai 2022
DOIs
PublikationsstatusVeröffentlicht - Sept. 2022

ÖFOS 2012

  • 101018 Statistik

Schlagwörter

  • ISOR

Zitationsweisen