Abstract
Gaussian processes that can be decomposed into a smooth mean function and a stationary autocorrelated noise process are considered and a fully automatic nonparametric method to simultaneous estimation of mean and auto-covariance functions of such processes is developed. The proposed empirical Bayes approach is data-driven, numerically efficient, and allows for the construction of confidence sets for the mean function. Performance is demonstrated in simulations and real data analysis. The method is implemented in the R package eBsc. 1
Originalsprache | Englisch |
---|---|
Aufsatznummer | 107519 |
Seitenumfang | 17 |
Fachzeitschrift | Computational Statistics and Data Analysis |
Jahrgang | 173 |
Frühes Online-Datum | 9 Mai 2022 |
DOIs | |
Publikationsstatus | Veröffentlicht - Sept. 2022 |
ÖFOS 2012
- 101018 Statistik
Schlagwörter
- ISOR