Low Scaling Algorithms for the Random Phase Approximation: Imaginary Time and Laplace Transformations

Merzuk Kaltak (Korresp. Autor*in), Jiri Klimes, Georg Kresse

Veröffentlichungen: Beitrag in FachzeitschriftArtikelPeer Reviewed

Abstract

In this paper, we determine efficient imaginary frequency and imaginary time grids for second-order Møller–Plesset (MP) perturbation theory. The least-squares and Minimax quadratures are compared for periodic systems, finding that the Minimax quadrature performs slightly better for the considered materials. We show that the imaginary frequency grids developed for second order also perform well for the correlation energy in the direct random phase approximation. Furthermore, we show that the polarizabilities on the imaginary time axis can be Fourier-transformed to the imaginary frequency domain, since the time and frequency Minimax grids are dual to each other. The same duality is observed for the least-squares grids. The transformation from imaginary time to imaginary frequency allows one to reduce the time complexity to cubic (in system size), so that random phase approximation (RPA) correlation energies become accessible for large systems.
OriginalspracheEnglisch
Seiten (von - bis)2498-2507
Seitenumfang10
FachzeitschriftJournal of Chemical Theory and Computation
Jahrgang10
Ausgabenummer6
DOIs
PublikationsstatusVeröffentlicht - 10 Juni 2014

ÖFOS 2012

  • 103025 Quantenmechanik
  • 103036 Theoretische Physik
  • 103015 Kondensierte Materie
  • 103009 Festkörperphysik

Fingerprint

Untersuchen Sie die Forschungsthemen von „Low Scaling Algorithms for the Random Phase Approximation: Imaginary Time and Laplace Transformations“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitationsweisen