Machine learning-based prediction of polaron-vacancy patterns on the TiO2(110) surface

Viktor C. Birschitzky (Korresp. Autor*in), Igor Sokolović, Michael Prezzi, Krisztián Palotás, Martin Setvín, Ulrike Diebold, Michele Reticcioli, Cesare Franchini

Veröffentlichungen: Beitrag in FachzeitschriftArtikelPeer Reviewed

Abstract

The multifaceted physics of oxides is shaped by their composition and the presence of defects, which are often accompanied by the formation of polarons. The simultaneous presence of polarons and defects, and their complex interactions, pose challenges for first-principles simulations and experimental techniques. In this study, we leverage machine learning and a first-principles database to analyze the distribution of surface oxygen vacancies (V O) and induced small polarons on rutile TiO 2(110), effectively disentangling the interactions between polarons and defects. By combining neural-network supervised learning and simulated annealing, we elucidate the inhomogeneous V O distribution observed in scanning probe microscopy (SPM). Our approach allows us to understand and predict defective surface patterns at enhanced length scales, identifying the specific role of individual types of defects. Specifically, surface-polaron-stabilizing V O-configurations are identified, which could have consequences for surface reactivity.

OriginalspracheEnglisch
Aufsatznummer89
Seitenumfang9
Fachzeitschriftnpj Computational Materials
Jahrgang10
Ausgabenummer1
Frühes Online-Datum22 Jan. 2024
DOIs
PublikationsstatusVeröffentlicht - 6 Mai 2024

ÖFOS 2012

  • 103009 Festkörperphysik

Zitationsweisen