magnum.np. a PyTorch based GPU enhanced finite difference micromagnetic simulation framework for high level development and inverse design

Florian Bruckner (Korresp. Autor*in), Sabri Koraltan, Claas Abert, Dieter Suess

Veröffentlichungen: Beitrag in FachzeitschriftArtikelPeer Reviewed

Abstract

magnum.np is a micromagnetic finite-difference library completely based on the tensor library PyTorch. The use of such a high level library leads to a highly maintainable and extensible code base which is the ideal candidate for the investigation of novel algorithms and modeling approaches. On the other hand magnum.np benefits from the device abstraction and optimizations of PyTorch enabling the efficient execution of micromagnetic simulations on a number of computational platforms including graphics processing units and potentially Tensor processing unit systems. We demonstrate a competitive performance to state-of-the-art micromagnetic codes such as mumax3 and show how our code enables the rapid implementation of new functionality. Furthermore, handling inverse problems becomes possible by using PyTorch’s autograd feature.
OriginalspracheEnglisch
Aufsatznummer12054
Seitenumfang13
FachzeitschriftScientific Reports
Jahrgang13
Ausgabenummer1
DOIs
PublikationsstatusVeröffentlicht - 25 Juli 2023

ÖFOS 2012

  • 103043 Computational Physics

Fingerprint

Untersuchen Sie die Forschungsthemen von „magnum.np. a PyTorch based GPU enhanced finite difference micromagnetic simulation framework for high level development and inverse design“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitationsweisen