Marginally outer trapped tubes in de Sitter spacetime

Marc Mars, Carl Rossdeutscher, Walter Simon (Korresp. Autor*in), Roland Steinbauer

Veröffentlichungen: Beitrag in FachzeitschriftArtikelPeer Reviewed

Abstract

We prove two results which are relevant for constructing marginally outer trapped tubes (MOTTs) in de Sitter spacetime. The first one (Theorem 1) holds more generally, namely for spacetimes satisfying the null convergence condition and containing a timelike conformal Killing vector with a “temporal function”. We show that all marginally outer trapped surfaces (MOTSs) in such a spacetime are unstable. This prevents application of standard results on the propagation of stable MOTSs to MOTTs. On the other hand, it was shown recently, Charlton et al. (minimal surfaces and alternating multiple zetas, arXiv:2407.07130), that for every sufficiently high genus, there exists a smooth, complete family of CMC surfaces embedded in the round 3-sphere S3. This family connects a Lawson minimal surface with a doubly covered geodesic 2-sphere. We show (Theorem 2) by a simple scaling argument that this result translates to an existence proof for complete MOTTs with CMC sections in de Sitter spacetime. Moreover, the area of these sections increases strictly monotonically. We compare this result with an area law obtained before for holographic screens.

OriginalspracheEnglisch
Aufsatznummer141
Seiten (von - bis)1-17
FachzeitschriftLetters in Mathematical Physics
Jahrgang114
Ausgabenummer6
DOIs
PublikationsstatusVeröffentlicht - Dez. 2024

ÖFOS 2012

  • 101006 Differentialgeometrie
  • 103028 Relativitätstheorie

Fingerprint

Untersuchen Sie die Forschungsthemen von „Marginally outer trapped tubes in de Sitter spacetime“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitationsweisen