Measurement Dependence Inducing Latent Causal Models

Alex Markham, Moritz Grosse-Wentrup

Veröffentlichungen: Beitrag zu KonferenzPaperPeer Reviewed

Abstract

We consider the task of causal structure learning over measurement dependence inducing latent (MeDIL) causal models. We show that thistask can be framed in terms of the graph theoretic problem of finding edge clique covers, resulting in an algorithm for returning minimalMeDIL causal models (minMCMs). This algorithm is non-parametric, requiring no assumptions about linearity or Gaussianity. Furthermore, despite rather weak assumptions aboutthe class of MeDIL causal models, we show that minimality in minMCMs implies some rather specific and interesting properties. By establishing MeDIL causal models as a semantics for edge clique covers, we also provide a starting point for future work further connecting causal structure learning to developments in graph theory and network science.
OriginalspracheEnglisch
Seiten590-599
Seitenumfang10
DOIs
PublikationsstatusVeröffentlicht - 21 Sept. 2020
VeranstaltungConference on Uncertainty and Artificial Intelligence - online, Unbekannt/undefiniert
Dauer: 3 Aug. 20206 Aug. 2020
Konferenznummer: 36
http://www.auai.org/uai2020/index.php
https://www.auai.org/uai2020/

Konferenz

KonferenzConference on Uncertainty and Artificial Intelligence
KurztitelUAI
Land/GebietUnbekannt/undefiniert
Zeitraum3/08/206/08/20
Internetadresse

ÖFOS 2012

  • 102019 Machine Learning
  • 101011 Graphentheorie
  • 101018 Statistik

Fingerprint

Untersuchen Sie die Forschungsthemen von „Measurement Dependence Inducing Latent Causal Models“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitationsweisen