Aktivitäten pro Jahr
Abstract
We consider the task of causal structure learning over measurement dependence inducing latent (MeDIL) causal models. We show that thistask can be framed in terms of the graph theoretic problem of finding edge clique covers, resulting in an algorithm for returning minimalMeDIL causal models (minMCMs). This algorithm is non-parametric, requiring no assumptions about linearity or Gaussianity. Furthermore, despite rather weak assumptions aboutthe class of MeDIL causal models, we show that minimality in minMCMs implies some rather specific and interesting properties. By establishing MeDIL causal models as a semantics for edge clique covers, we also provide a starting point for future work further connecting causal structure learning to developments in graph theory and network science.
Originalsprache | Englisch |
---|---|
Seiten | 590-599 |
Seitenumfang | 10 |
DOIs | |
Publikationsstatus | Veröffentlicht - 21 Sept. 2020 |
Veranstaltung | Conference on Uncertainty and Artificial Intelligence - online, Unbekannt/undefiniert Dauer: 3 Aug. 2020 → 6 Aug. 2020 Konferenznummer: 36 http://www.auai.org/uai2020/index.php https://www.auai.org/uai2020/ |
Konferenz
Konferenz | Conference on Uncertainty and Artificial Intelligence |
---|---|
Kurztitel | UAI |
Land/Gebiet | Unbekannt/undefiniert |
Zeitraum | 3/08/20 → 6/08/20 |
Internetadresse |
ÖFOS 2012
- 102019 Machine Learning
- 101011 Graphentheorie
- 101018 Statistik
Fingerprint
Untersuchen Sie die Forschungsthemen von „Measurement Dependence Inducing Latent Causal Models“. Zusammen bilden sie einen einzigartigen Fingerprint.Aktivitäten
- 2 Posterpräsentation
-
Mesurement Dependence Inducing Latent (MeDIL) Causal Models
Alex Markham (Vortragende*r) & Moritz Grosse-Wentrup (Autor*in)
14 Dez. 2019Aktivität: Vorträge › Posterpräsentation › Science to Science
-
A Causal Semantics for the Edge Clique Cover Problem
Alex Markham (Vortragende*r) & Moritz Grosse-Wentrup (Autor*in)
23 Okt. 2019Aktivität: Vorträge › Posterpräsentation › Science to Science