Projekte pro Jahr
Abstract
We develop a systematic approach to determine and measure numerically the geometry of generic quantum or "fuzzy" geometries realized by a set of finite-dimensional hermitian matrices. The method is designed to recover the semi-classical limit of quantized symplectic spaces embedded in $\mathbb{R}^d$ including the well-known examples of fuzzy spaces, but it applies much more generally. The central tool is provided by quasi-coherent states, which are defined as ground states of Laplace- or Dirac operators corresponding to localized point branes in target space. The displacement energy of these quasi-coherent states is used to extract the local dimension and tangent space of the semi-classical geometry, and provides a measure for the quality and self-consistency of the semi-classical approximation. The method is discussed and tested with various examples, and implemented in an open-source Mathematica package.
Originalsprache | Englisch |
---|---|
Aufsatznummer | 285301 |
Seitenumfang | 44 |
Fachzeitschrift | Journal of Physics A: Mathematical and Theoretical |
Jahrgang | 49 |
Ausgabenummer | 28 |
DOIs | |
Publikationsstatus | Veröffentlicht - 31 Mai 2016 |
ÖFOS 2012
- 103036 Theoretische Physik
- 103019 Mathematische Physik
Projekte
- 2 Abgeschlossen
-
-
Branes, Eichtheorie und Gravitation in Matrix Modelle
19/06/12 → 18/06/15
Projekt: Forschungsförderung