Abstract

Memes are a popular form of communicating trends and ideas in social media and on the internet in general, combining the modalities of images and text. They can express humor and sarcasm but can also have offensive content. Analyzing and classifying memes automatically is challenging since their interpretation relies on the understanding of visual elements, language, and background knowledge. Thus, it is important to meaningfully represent these sources and the interaction between them in order to classify a meme as a whole. In this work, we propose to use scene graphs, that express images in terms of objects and their visual relations, and knowledge graphs as structured representations for meme classification with a Transformer-based architecture. We compare our approach with ImgBERT, a multimodal model that uses only learned (instead of structured) representations of the meme, and observe consistent improvements. We further provide a dataset with human graph annotations that we compare to automatically generated graphs and entity linking. Analysis shows that automatic methods link more entities than human annotators and that automatically generated graphs are better suited for hatefulness classification in memes.

OriginalspracheEnglisch
TitelDocument Analysis and Recognition – ICDAR 2023
Untertitel17th International Conference, Proceedings
Redakteure*innenGernot A. Fink, Rajiv Jain, Koichi Kise, Richard Zanibbi
ErscheinungsortCham
Herausgeber (Verlag)Springer Science and Business Media Deutschland GmbH
Seiten534-551
Seitenumfang18
ISBN (Print)9783031416750
DOIs
PublikationsstatusVeröffentlicht - 2023
Veranstaltung17th International Conference on Document Analysis and Recognition, ICDAR 2023 - San José, USA / Vereinigte Staaten
Dauer: 21 Aug. 202326 Aug. 2023

Publikationsreihe

ReiheLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Band14187 LNCS
ISSN0302-9743

Konferenz

Konferenz17th International Conference on Document Analysis and Recognition, ICDAR 2023
Land/GebietUSA / Vereinigte Staaten
OrtSan José
Zeitraum21/08/2326/08/23

ÖFOS 2012

  • 102001 Artificial Intelligence
  • 102035 Data Science
  • 102003 Bildverarbeitung

Fingerprint

Untersuchen Sie die Forschungsthemen von „MemeGraphs: Linking Memes to Knowledge Graphs“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitationsweisen