Mixing properties in expanding Lorenz maps

Piotr Oprocha, Paweł Potorski, Peter Raith (Korresp. Autor*in)

Veröffentlichungen: Beitrag in FachzeitschriftArtikelPeer Reviewed

Abstract

Let T f:[0,1]→[0,1] be an expanding Lorenz map, this means T fx:=f(x)(mod 1) where f:[0,1]→[0,2] is a strictly increasing map satisfying inf⁡f >1. Then T f has two pieces of monotonicity. In this paper, sufficient conditions when T f is topologically mixing are provided. For the special case f(x)=βx+α with β≥23 a full characterization of parameters (β,α) leading to mixing is given. Furthermore relations between renormalizability and T f being locally eventually onto are considered, and some gaps in classical results on the dynamics of Lorenz maps are corrected.

OriginalspracheEnglisch
Seiten (von - bis)712–755
Seitenumfang44
FachzeitschriftAdvances in Mathematics
Jahrgang343
DOIs
PublikationsstatusVeröffentlicht - 2019

ÖFOS 2012

  • 101027 Dynamische Systeme

Zitationsweisen