Modal Structuralism with Theoretical Terms

Holger Andreas, Georg Schiemer (Korresp. Autor*in)

Veröffentlichungen: Beitrag in FachzeitschriftArtikelPeer Reviewed

Abstract

In this paper, we aim to explore connections between a Carnapian semantics of theoretical terms and an eliminative structuralist approach in the philosophy of mathematics. Specifically, we will interpret the language of Peano arithmetic by applying the modal semantics of theoretical terms introduced in Andreas (Synthese 174(3):367-383, 2010). We will thereby show that the application to Peano arithmetic yields a formal semantics of universal structuralism, i.e., the view that ordinary mathematical statements in arithmetic express general claims about all admissible interpretations of the Peano axioms. Moreover, we compare this application with the modal structuralism by Hellman (Mathematics without numbers: towards a modal-structural interpretation. Oxford University Press: Oxford, 1989), arguing that it provides us with an easier epistemology of statements in arithmetic.

OriginalspracheEnglisch
Seiten (von - bis)721-745
Seitenumfang25
FachzeitschriftErkenntnis: an international journal of analytic philosophy
Jahrgang88
Ausgabenummer2
Frühes Online-Datum8 Mai 2021
DOIs
PublikationsstatusVeröffentlicht - Feb. 2023

ÖFOS 2012

  • 603113 Philosophie

Zitationsweisen