Multi-objective simulation optimization for complex urban mass rapid transit systems

David Schmaranzer (Korresp. Autor*in), Roland Braune, Karl Franz Dörner

Veröffentlichungen: Beitrag in FachzeitschriftArtikelPeer Reviewed

Abstract

In this paper, we present a multi-objective simulation-based headway optimization for complex urban mass rapid transit systems. Real-world applications often confront conflicting goals of cost versus service level. We propose a two-phase algorithm that combines the single-objective covariance matrix adaptation evolution strategy with a problem-specific multi-directional local search. With a computational study, we compare our proposed method against both a multi-objective covariance matrix adaptation evolution strategy and a non-dominated sorting genetic algorithm. The integrated discrete event simulation model has several stochastic elements. Fluctuating demand (i.e., creation of passengers) is driven by hourly origin-destination-matrices based on mobile phone and infrared count data. We also consider the passenger distribution along waiting platforms and within vehicles. Our two-phase optimization scheme outperforms the comparative approaches, in terms of both spread and the accuracy of the resulting Pareto front approximation.

OriginalspracheEnglisch
Seiten (von - bis)449-486
Seitenumfang38
FachzeitschriftAnnals of Operations Research
Jahrgang305
Ausgabenummer1
Frühes Online-Datum25 Sept. 2019
DOIs
PublikationsstatusVeröffentlicht - Okt. 2021

ÖFOS 2012

  • 502052 Betriebswirtschaftslehre

Fingerprint

Untersuchen Sie die Forschungsthemen von „Multi-objective simulation optimization for complex urban mass rapid transit systems“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitationsweisen