Multisoliton solutions for equivariant wave maps on a $2+1$ dimensional wormhole

Piotr Bizoń, Jacek Jendrej, Maciej Maliborski

Veröffentlichungen: Beitrag in FachzeitschriftArtikelPeer Reviewed

Abstract

We study equivariant wave maps from the $2+1$ dimensional wormhole to the 2-sphere. This model has explicit harmonic map solutions which, in suitable coordinates, have the form of the sine-Gordon kinks/anti-kinks. We conjecture that there exist asymptotically static chains of $N\geq 2$ alternating kinks and anti-kinks whose subsequent rates of expansion increase in geometric progression as $t\rightarrow \infty$. Our argument employs the method of collective coordinates to derive effective finite-dimensional ODE models for the asymptotic dynamics of $N$-chains. For $N=2,3$ the predictions of these effective models are verified by direct PDE computations which demonstrate that the $N$-chains lie at the threshold of kink-anti-kink annihilation.
OriginalspracheEnglisch
Seiten (von - bis)024006
Seitenumfang8
FachzeitschriftPhysical Review D
Jahrgang111
Ausgabenummer2
DOIs
PublikationsstatusVeröffentlicht - 3 Jan. 2025

Fördermittel

ÖFOS 2012

  • 101002 Analysis
  • 103019 Mathematische Physik

Fingerprint

Untersuchen Sie die Forschungsthemen von „Multisoliton solutions for equivariant wave maps on a $2+1$ dimensional wormhole“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitationsweisen