N-3/4 Law in the Cubic Lattice

Edoardo Mainini, Paolo Piovano, Bernd Schmidt, Ulisse Stefanelli

Veröffentlichungen: Beitrag in FachzeitschriftArtikelPeer Reviewed

Abstract

We investigate the Edge-Isoperimetric Problem (EIP) for sets with n elements of the cubic lattice by emphasizing its relation with the emergence of the Wulff shape in the crystallization problem. Minimizers M n of the edge perimeter are shown to deviate from a corresponding cubic Wulff configuration with respect to their symmetric difference by at most O (n 3 / 4) elements. The exponent 3 / 4 is optimal. This extends to the cubic lattice analogous results that have already been established for the triangular, the hexagonal, and the square lattice in two space dimensions.

OriginalspracheEnglisch
Seiten (von - bis)1480 - 1499
Seitenumfang20
FachzeitschriftJournal of Statistical Physics
Jahrgang176
Ausgabenummer6
DOIs
PublikationsstatusVeröffentlicht - Sep. 2019

ÖFOS 2012

  • 101002 Analysis

Zitationsweisen