Abstract
We investigate the Edge-Isoperimetric Problem (EIP) for sets with n elements of the cubic lattice by emphasizing its relation with the emergence of the Wulff shape in the crystallization problem. Minimizers M n of the edge perimeter are shown to deviate from a corresponding cubic Wulff configuration with respect to their symmetric difference by at most O (n 3 / 4) elements. The exponent 3 / 4 is optimal. This extends to the cubic lattice analogous results that have already been established for the triangular, the hexagonal, and the square lattice in two space dimensions.
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 1480 - 1499 |
Seitenumfang | 20 |
Fachzeitschrift | Journal of Statistical Physics |
Jahrgang | 176 |
Ausgabenummer | 6 |
DOIs | |
Publikationsstatus | Veröffentlicht - Sep. 2019 |
ÖFOS 2012
- 101002 Analysis