Non-adiabatic excited state dynamics of riboflavin after photoexcitation

Bastian Klaumünzer, Dominik Kröner, Hans Lischka, Peter Saalfrank (Korresp. Autor*in)

Veröffentlichungen: Beitrag in FachzeitschriftArtikelPeer Reviewed


Flavins are chromophores in light-gated enzymes and therefore central in many photobiological processes. To unravel the optical excitation process as the initial, elementary step towards signal transduction, detailed ultrafast (femtosecond) experiments probing the photo-activation of flavins have been carried out recently [Weigel et al., J. Phys. Chem. B, 2011, 115, 3656-3680.]. The present paper contributes to a further understanding and interpretation of these experiments by studying the post-excitation vibrational dynamics of riboflavin (RF) and microsolvated riboflavin, RF center dot 4H(2)O, using first principles non-adiabatic molecular dynamics. By analyzing the characteristic atom motions and calculating time-resolved stimulated emission spectra following pi pi* excitation, it is found that after optical excitation C-N and C-C vibrations in the isoalloxazine rings of riboflavin set in. The Franck-Condon (vertically excited) state decays within about 10 fs, in agreement with experiment. Anharmonic coupling leads to Intramolecular Vibrational energy Redistribution (IVR) on the timescale of about 80-100 fs, first to (other) C-C stretching modes of the isoalloxazine rings, then by energy spread over the whole molecule, including low-frequency in-plane modes. The IVR is accompanied by a red-shift and broadening of the emission spectrum. When RF is microsolvated with four water molecules, an overall redshift of optical spectra by about 20 nm is observed but the relaxation dynamics is only slightly affected. For several trajectories, a tendency for hydrogen transfer from water to flavin-nitrogen (N-5) was found.
Seiten (von - bis)8693-8702
FachzeitschriftPhysical Chemistry Chemical Physics
PublikationsstatusVeröffentlicht - 2012

ÖFOS 2012

  • 104017 Physikalische Chemie
  • 104022 Theoretische Chemie