Non-commutative geometry and matrix models

Harold Steinacker (Korresp. Autor*in)

Veröffentlichungen: Beitrag in FachzeitschriftMeeting Abstract/Conference PaperPeer Reviewed

Abstract

These notes provide an introduction to the noncommutative matrix geometry which arises within matrix models of Yang-Mills type. Starting from basic examples of compact fuzzy spaces, a general notion of embedded noncommutative spaces (branes) is formulated, and their effective Riemannian geometry is elaborated. This class of configurations is preserved under small deformations, and is therefore appropriate for matrix models. A realization of generic 4-dimensional geometries is sketched, and the relation with spectral geometry and with noncommutative gauge theory is explained. In a second part, dynamical aspects of these matrix geometries are discussed. The one-loop effective action for the maximally supersymmetric IKKT or IIB matrix model is discussed, which is well-behaved on 4-dimensional branes.
OriginalspracheEnglisch
Seiten (von - bis)1-27
Seitenumfang27
FachzeitschriftProceedings of Science (PoS)
JahrgangQGQGS2011
PublikationsstatusVeröffentlicht - 2011

ÖFOS 2012

  • 103012 Hochenergiephysik
  • 103019 Mathematische Physik

Zitationsweisen