Numerical Gaussian Process Kalman Filtering for Spatiotemporal Systems

Armin Kuper, Steffen Waldherr

Veröffentlichungen: Beitrag in FachzeitschriftArtikelPeer Reviewed

Abstract

We present a novel Kalman filter (KF) for spatiotemporal systems called the numerical Gaussian process Kalman filter (NGPKF). Numerical Gaussian processes have recently been introduced as a physics-informed machine-learning method for simulating time-dependent partial differential equations without the need for spatial discretization while also providing uncertainty quantification of the simulation resulting from noisy initial data. We formulate numerical Gaussian processes as linear Gaussian state space models. This allows us to derive the recursive KF algorithm under the numerical Gaussian process state space model. Using two case studies, we show that the NGPKF is more accurate and robust, given enough measurements, than a spatial discretization-based KF.

OriginalspracheEnglisch
Seiten (von - bis)3131-3138
Seitenumfang8
FachzeitschriftIEEE Transactions on Automatic Control
Jahrgang68
Ausgabenummer5
DOIs
PublikationsstatusVeröffentlicht - 1 Mai 2023

ÖFOS 2012

  • 202034 Regelungstechnik
  • 102019 Machine Learning

Fingerprint

Untersuchen Sie die Forschungsthemen von „Numerical Gaussian Process Kalman Filtering for Spatiotemporal Systems“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitationsweisen