Numerical investigation of the conditioning for plane wave discontinuous Galerkin methods

Scott Congreve, Joscha Gedicke, Ilaria Perugia

Veröffentlichungen: Beitrag in BuchBeitrag in KonferenzbandPeer Reviewed

Abstract

We present a numerical study to investigate the conditioning of the plane wave discontinuous Galerkin discretization of the Helmholtz problem. We provide empirical evidence that the spectral condition number of the plane wave basis on a single element depends algebraically on the mesh size and the wave number, and exponentially on the number of plane wave directions; we also test its dependence on the element shape. We show that the conditioning of the global system can be improved by orthogonalization of the local basis functions with the modified Gram-Schmidt algorithm, which results in significantly fewer GMRES iterations for solving the discrete problem iteratively.

OriginalspracheEnglisch
TitelNumerical Mathematics and Advanced Applications ENUMATH 2017
Redakteure*innenFlorin Adrian Radu, Kundan Kumar, Inga Berre, Jan Martin Nordbotten, Iuliu Sorin Pop
Herausgeber (Verlag)Springer
Seiten493-500
Seitenumfang8
ISBN (Print)9783319964140
DOIs
PublikationsstatusVeröffentlicht - 1 Jan. 2019
VeranstaltungEuropean Conference on Numerical Mathematics and Advanced Applications, ENUMATH 2017 - Voss, Norwegen
Dauer: 25 Sep. 201729 Sep. 2017

Publikationsreihe

ReiheLecture Notes in Computational Science and Engineering
Band126
ISSN1439-7358

Konferenz

KonferenzEuropean Conference on Numerical Mathematics and Advanced Applications, ENUMATH 2017
Land/GebietNorwegen
OrtVoss
Zeitraum25/09/1729/09/17

ÖFOS 2012

  • 101014 Numerische Mathematik

Zitationsweisen