Observation of hidden atomic order at the interface between Fe and topological insulator Bi2Te3

Jaime Sanchez-Barriga, Ilya I. Ogorodnikov, Mikhail V. Kuznetsov, Andrey A. Volykhov, Fumihiko Matsui, Carolien Callaert, Joke Hadermann, Nikolay I. Verbitskiy, Roland J. Koch, Andrei Varykhalov, Oliver Rader, Lada V. Yashina (Korresp. Autor*in)

Veröffentlichungen: Beitrag in FachzeitschriftArtikelPeer Reviewed

Abstract

To realize spintronic devices based on topological insulators (TIs), well-defined interfaces between magnetic metals and TIs are required. Here, we characterize atomically precisely the interface between the 3d transition metal Fe and the TI Bi 2Te 3 at different stages of its formation. Using photoelectron diffraction and holography, we show that after deposition of up to 3 monolayers Fe on Bi 2Te 3 at room temperature, the Fe atoms are ordered at the interface despite the surface disorder revealed by our scanning-tunneling microscopy images. We find that Fe occupies two different sites: a hollow adatom deeply relaxed into the Bi 2Te 3 quintuple layers and an interstitial atom between the third (Te) and fourth (Bi) atomic layers. For both sites, our core-level photoemission spectra and density-functional theory calculations demonstrate simultaneous chemical bonding of Fe to both Te and Bi atoms. We further show that upon deposition of Fe up to a thickness of 20 nm, the Fe atoms penetrate deeper into the bulk forming a 2-5 nm interface layer containing FeTe. In addition, excessive Bi is pushed down into the bulk of Bi 2Te 3 leading to the formation of septuple layers of Bi 3Te 4 within a distance of ∼25 nm from the interface. Controlling the magnetic properties of the complex interface structures revealed by our work will be of critical importance when optimizing the efficiency of spin injection in TI-based devices.

OriginalspracheEnglisch
Seiten (von - bis)30520-30532
Seitenumfang13
FachzeitschriftPhysical Chemistry Chemical Physics
Jahrgang19
Ausgabenummer45
DOIs
PublikationsstatusVeröffentlicht - 7 Dez. 2017

ÖFOS 2012

  • 104006 Festkörperchemie
  • 103018 Materialphysik
  • 103009 Festkörperphysik
  • 103020 Oberflächenphysik

Zitationsweisen