Abstract
Constraining the helium enhancement in stars is critical for understanding the formation mechanisms of multiple populations in star clusters. However, measuring helium variations for many stars within a cluster remains observationally challenging. We use Hubble Space Telescope photometry combined with MUSE spectroscopic data for over 7,200 red-giant branch stars in \omc\ to measure helium differences between distinct groups of stars as a function of metallicity separating the impact of helium enhancements from other abundance variations on the pseudo-color (chromosome) diagrams. Our results show that stars at all metallicities have subpopulations with significant helium enhancement ($\Delta Y_{min} \gtrsim$ 0.11). We find a rapid increase in helium enhancement from low metallicities ($\rm{[Fe/H] \simeq -2.05}$ to $\rm{[Fe/H] \simeq -1.92})$, with this enhancement leveling out at \deltay\ $= 0.154$ at higher metallicities. The fraction of helium-enhanced stars steadily increases with metallicity ranging from 10\% at $\rm{[Fe/H] \simeq -2.04}$ to over $90\%$ at $\rm{[Fe/H] \simeq -1.04}$. This study is the first to examine helium enhancement across the full range of metallicities in \omc{}, providing new insight into its formation history and additional constraints on enrichment mechanisms.
Originalsprache | Englisch |
---|---|
Fachzeitschrift | The Astrophysical Journal |
Publikationsstatus | Eingereicht - 1 Dez. 2024 |
ÖFOS 2012
- 103003 Astronomie
- 103004 Astrophysik