On Monte-Carlo methods in convex stochastic optimization

Daniel Bartl, Shahar Mendelson

Veröffentlichungen: Beitrag in FachzeitschriftArtikelPeer Reviewed

Abstract

We develop a novel procedure for estimating the optimizer of general convex stochastic optimization problems of the form min x∈χ E[F(x, ξ)], when the given data is a finite independent sample selected according to ξ. The procedure is based on a median-of-means tournament, and is the first procedure that exhibits the optimal statistical performance in heavy tailed situations: we recover the asymptotic rates dictated by the central limit theorem in a nonasymptotic manner once the sample size exceeds some explicitly computable threshold. Additionally, our results apply in the high-dimensional setup, as the threshold sample size exhibits the optimal dependence on the dimension (up to a logarithmic factor). The general setting allows us to recover recent results on multivariate mean estimation and linear regression in heavy-tailed situations and to prove the first sharp, nonasymptotic results for the portfolio optimization problem.

OriginalspracheEnglisch
Seiten (von - bis)3146-3198
Seitenumfang53
FachzeitschriftAnnals of Applied Probability
Jahrgang32
Ausgabenummer4
DOIs
PublikationsstatusVeröffentlicht - Aug. 2022

ÖFOS 2012

  • 101024 Wahrscheinlichkeitstheorie
  • 101007 Finanzmathematik

Zitationsweisen