On polynomial Trefftz spaces for the linear time-dependent Schrödinger equation

Sergio Gómez, Andrea Moiola, Ilaria Perugia, Paul Stocker

Veröffentlichungen: Beitrag in FachzeitschriftArtikelPeer Reviewed

Abstract

We study the approximation properties of complex-valued polynomial Trefftz spaces for the (d+1)-dimensional linear time-dependent Schrödinger equation. More precisely, we prove that for the space–time Trefftz discontinuous Galerkin variational formulation proposed by Gómez and Moiola (2022), the same h-convergence rates as for polynomials of degree p in (d+1) variables can be obtained in a mesh-dependent norm by using a space of Trefftz polynomials of anisotropic degree. For such a space, the dimension is equal to that of the space of polynomials of degree 2p in d variables, and bases are easily constructed.

OriginalspracheEnglisch
Aufsatznummer108824
FachzeitschriftApplied Mathematics Letters
Jahrgang146
DOIs
PublikationsstatusVeröffentlicht - Dez. 2023

ÖFOS 2012

  • 101014 Numerische Mathematik

Fingerprint

Untersuchen Sie die Forschungsthemen von „On polynomial Trefftz spaces for the linear time-dependent Schrödinger equation“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitationsweisen