TY - JOUR
T1 - On superconvergence of Runge–Kutta convolution quadrature for the wave equation
AU - Melenk, Jens Markus
AU - Rieder, Alexander
N1 - Publisher Copyright:
© 2021, The Author(s).
PY - 2021/1
Y1 - 2021/1
N2 - The semidiscretization of a sound soft scattering problem modelled by the wave equation is analyzed. The spatial treatment is done by integral equation methods. Two temporal discretizations based on Runge–Kutta convolution quadrature are compared: one relies on the incoming wave as input data and the other one is based on its temporal derivative. The convergence rate of the latter is shown to be higher than previously established in the literature. Numerical results indicate sharpness of the analysis. The proof hinges on a novel estimate on the Dirichlet-to-Impedance map for certain Helmholtz problems. Namely, the frequency dependence can be lowered by one power of | s| (up to a logarithmic term for polygonal domains) compared to the Dirichlet-to-Neumann map.
AB - The semidiscretization of a sound soft scattering problem modelled by the wave equation is analyzed. The spatial treatment is done by integral equation methods. Two temporal discretizations based on Runge–Kutta convolution quadrature are compared: one relies on the incoming wave as input data and the other one is based on its temporal derivative. The convergence rate of the latter is shown to be higher than previously established in the literature. Numerical results indicate sharpness of the analysis. The proof hinges on a novel estimate on the Dirichlet-to-Impedance map for certain Helmholtz problems. Namely, the frequency dependence can be lowered by one power of | s| (up to a logarithmic term for polygonal domains) compared to the Dirichlet-to-Neumann map.
UR - http://www.scopus.com/inward/record.url?scp=85099103180&partnerID=8YFLogxK
U2 - 10.1007/s00211-020-01161-9
DO - 10.1007/s00211-020-01161-9
M3 - Article
AN - SCOPUS:85099103180
SN - 0029-599X
VL - 147
SP - 157
EP - 188
JO - Numerische Mathematik
JF - Numerische Mathematik
IS - 1
ER -