On superconvergence of Runge–Kutta convolution quadrature for the wave equation

Jens Markus Melenk, Alexander Rieder

Veröffentlichungen: Beitrag in FachzeitschriftArtikelPeer Reviewed

Abstract

The semidiscretization of a sound soft scattering problem modelled by the wave equation is analyzed. The spatial treatment is done by integral equation methods. Two temporal discretizations based on Runge–Kutta convolution quadrature are compared: one relies on the incoming wave as input data and the other one is based on its temporal derivative. The convergence rate of the latter is shown to be higher than previously established in the literature. Numerical results indicate sharpness of the analysis. The proof hinges on a novel estimate on the Dirichlet-to-Impedance map for certain Helmholtz problems. Namely, the frequency dependence can be lowered by one power of | s| (up to a logarithmic term for polygonal domains) compared to the Dirichlet-to-Neumann map.
OriginalspracheEnglisch
Seiten (von - bis)157–188
Seitenumfang32
FachzeitschriftNumerische Mathematik
Jahrgang147
Ausgabenummer1
DOIs
PublikationsstatusVeröffentlicht - Jan. 2021

ÖFOS 2012

  • 101014 Numerische Mathematik

Fingerprint

Untersuchen Sie die Forschungsthemen von „On superconvergence of Runge–Kutta convolution quadrature for the wave equation“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitationsweisen