On the strong convergence of continuous Newton-like inertial dynamics with Tikhonov regularization for monotone inclusions

Radu Ioan Bot (Korresp. Autor*in), Ernö Robert Csetnek, Szilárd Csaba László

Veröffentlichungen: Beitrag in FachzeitschriftArtikelPeer Reviewed

Abstract

In a Hilbert space H, we study the convergence properties of the trajectories of a Newton-like inertial dynamical system with a Tikhonov regularization term governed by a general maximally monotone operator A :H→2H. The maximally monotone operator enters the dynamics via its Yosida approximation with an appropriate adjustment of the Yosida regularization parameter, by adopting an approach introduced by Attouch and Peypouquet (2019) [7]and further developed by Attouch and László (2021) [5]. We obtain fast rates of convergence for the velocity and the Yosida regularization term towards zero, while the generated trajectories converge weakly towards a zero of Aor, depending on the system parameters, strongly towards the zero of minimum norm of A. Our analysis reveals that the damping coefficient, the Yosida regularization parameter and the Tikhonov parametrization are strongly correlated.
OriginalspracheEnglisch
Aufsatznummer127689
FachzeitschriftJournal of Mathematical Analysis and Applications
Jahrgang530
Ausgabenummer2
DOIs
PublikationsstatusVeröffentlicht - 15 Feb. 2024

ÖFOS 2012

  • 101002 Analysis
  • 101016 Optimierung

Fingerprint

Untersuchen Sie die Forschungsthemen von „On the strong convergence of continuous Newton-like inertial dynamics with Tikhonov regularization for monotone inclusions“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitationsweisen