On the Two Sides of Redundancy in Graph Neural Networks

Franka Bause (Korresp. Autor*in), Samir Moustafa, Johannes Langguth, Wilfried Gansterer, Nils Morten Kriege

Veröffentlichungen: Beitrag in BuchBeitrag in KonferenzbandPeer Reviewed

Abstract

Message passing neural networks iteratively generate node embeddings by aggregating information from neighboring nodes. With increasing depth, information from more distant nodes is included. However, node embeddings may be unable to represent the growing node neighborhoods accurately and the influence of distant nodes may vanish, a problem referred to as oversquashing. Information redundancy in message passing, i.e., the repetitive exchange and encoding of identical information amplifies oversquashing. We develop a novel aggregation scheme based on neighborhood trees, which allows for controlling redundancy by pruning redundant branches of unfolding trees underlying standard message passing. While the regular structure of unfolding trees allows the reuse of intermediate results in a straightforward way, the use of neighborhood trees poses computational challenges. We propose compact representations of neighborhood trees and merge them, exploiting computational redundancy by identifying isomorphic subtrees. From this, node and graph embeddings are computed via a neural architecture inspired by tree canonization techniques. Our method is less susceptible to oversquashing than traditional message passing neural networks and can improve the accuracy on widely used benchmark datasets.
OriginalspracheEnglisch
TitelMachine Learning and Knowledge Discovery in Databases. Research Track. ECML PKDD 2024
Redakteure*innenAlbert Bifet, Jesse Davis, Tomas Krilavičius, Meelis Kull, Eirini Ntoutsi, Indrė Žliobaitė
Herausgeber (Verlag)Springer Cham
Seiten371-388
Seitenumfang18
Band14946
ISBN (Print)9783031703645
DOIs
PublikationsstatusVeröffentlicht - 22 Aug. 2024
VeranstaltungEuropean Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases - Vilnius, Litauen
Dauer: 9 Sept. 202413 Sept. 2024
https://ecmlpkdd.org/2024/

Publikationsreihe

ReiheLecture Notes in Computer Science
Band14946
ISSN0302-9743

Konferenz

KonferenzEuropean Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases
Kurztitel ECML PKDD 2024
Land/GebietLitauen
OrtVilnius
Zeitraum9/09/2413/09/24
Internetadresse

ÖFOS 2012

  • 102019 Machine Learning

Fingerprint

Untersuchen Sie die Forschungsthemen von „On the Two Sides of Redundancy in Graph Neural Networks“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitationsweisen