O'Reach: Even faster reachability in large graphs

Kathrin Hanauer, Christian Schulz, Jonathan Trummer

Veröffentlichungen: Beitrag in BuchBeitrag in KonferenzbandPeer Reviewed

Abstract

One of the most fundamental problems in computer science is the reachability problem: Given a directed graph and two vertices s and t, can s reach t via a path? We revisit existing techniques and combine them with new approaches to support a large portion of reachability queries in constant time using a linear-sized reachability index. Our new algorithm O'Reach can be easily combined with previously developed solutions for the problem or run standalone. In a detailed experimental study, we compare a variety of algorithms with respect to their index-building and query times as well as their memory footprint on a diverse set of instances. Our experiments indicate that the query performance often depends strongly not only on the type of graph, but also on the result, i.e., reachable or unreachable. Furthermore, we show that previous algorithms are significantly sped up when combined with our new approach in almost all scenarios. Surprisingly, due to cache effects, a higher investment in space doesn't necessarily pay off: Reachability queries can often be answered even faster than single memory accesses in a precomputed full reachability matrix.

OriginalspracheEnglisch
Titel19th International Symposium on Experimental Algorithms, SEA 2021
Redakteure*innenDavid Coudert, Emanuele Natale
ErscheinungsortDagstuhl
Herausgeber (Verlag)Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik GmbH
Seiten13:1--13:24
ISBN (elektronisch)9783959771856
DOIs
PublikationsstatusVeröffentlicht - 1 Juni 2021
Veranstaltung19th Symposium on Experimental Algorithms (SEA 2021) - Online, Unbekannt/undefiniert
Dauer: 7 Juni 20219 Juni 2021
https://sea2021.i3s.unice.fr/

Publikationsreihe

ReiheLeibniz International Proceedings in Informatics (LIPIcs)
Band190
ISSN1868-8969

Konferenz

Konferenz19th Symposium on Experimental Algorithms (SEA 2021)
Land/GebietUnbekannt/undefiniert
Zeitraum7/06/219/06/21
Internetadresse

ÖFOS 2012

  • 102031 Theoretische Informatik

Fingerprint

Untersuchen Sie die Forschungsthemen von „O'Reach: Even faster reachability in large graphs“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitationsweisen