Abstract
This paper presents an algorithm for approximately minimizing a convex function in simple, not necessarily bounded convex, finite-dimensional domains, assuming only that function values and subgradients are available. No global information about the objective function is needed apart from a strong convexity parameter (which can be put to zero if only convexity is known). The worst case number of iterations needed to achieve a given accuracy is independent of the dimension and—apart from a constant factor—best possible under a variety of smoothness assumptions on the objective function.
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 1- 21 |
Seitenumfang | 21 |
Fachzeitschrift | Mathematical Programming |
Jahrgang | 158 |
Ausgabenummer | 1-2 |
Frühes Online-Datum | 16 Mai 2015 |
DOIs | |
Publikationsstatus | Veröffentlicht - Juli 2016 |
ÖFOS 2012
- 101016 Optimierung