Oxidation, reduction and semi-classical limit for quantum matrix geometries

Laura O. Felder (Korresp. Autor*in), Harold C. Steinacker (Korresp. Autor*in)

Veröffentlichungen: Beitrag in FachzeitschriftArtikelPeer Reviewed

Abstract

Matrix configurations define noncommutative spaces endowed with extra structure including a generalized Laplace operator, and hence a metric structure. Made dynamical via matrix models, they describe rich physical systems including noncommutative gauge theory and emergent gravity. Refining the construction in [25], we construct a semi-classical limit through an immersed submanifold of complex projective space based on quasi-coherent states. We observe the phenomenon of oxidation, where the resulting semi-classical space acquires spurious extra dimensions. We propose to remove this artifact by passing to a leaf of a carefully chosen foliation, which allows to extract the geometrical content of the noncommutative spaces. This is demonstrated numerically via multiple examples.
OriginalspracheEnglisch
Aufsatznummer105163
Seitenumfang15
FachzeitschriftJournal of Geometry and Physics
Jahrgang199
DOIs
PublikationsstatusVeröffentlicht - Mai 2024

ÖFOS 2012

  • 103012 Hochenergiephysik
  • 103028 Relativitätstheorie
  • 103019 Mathematische Physik

Zitationsweisen