TY - JOUR
T1 - Partner choice during meiosis is regulated by Hop1-promoted dimerization of Mek1
AU - Niu, Hengyao
AU - Wan, Lihong
AU - Baumgartner, Bridget
AU - Schaefer, Dana
AU - Loidl, Josef
AU - Hollingsworth, Nancy M
N1 - 19.06.2008: Datenanforderung 2324 (kein Statusverlauf, kein Scopus)
15.01.2009: Datenanforderung 2651 (Import Sachbearbeiter)
15.01.2009: Datenanforderung 2651 (Import Sachbearbeiter)
PY - 2005
Y1 - 2005
N2 - Meiotic recombination differs from mitotic recombination in that DSBs are repaired using homologous chromosomes, rather than sister chromatids. This change in partner choice is due in part to a barrier to sister chromatid repair (BSCR) created by the meiosis-specific kinase, Mek1, in a complex with two other meiosis-specific proteins, Hop1 and Red1. HOP1 contains two functional domains, called the N and C domains. Analysis of a point mutation that specifically inactivates the C domain (hop1-K593A) reveals that the N domain is sufficient for Hop1 localization to chromosomes and for Red1 and Hop1 interactions. The C domain is needed for spore viability, for chromosome synapsis, and for preventing DMC1-independent DSB repair, indicating it plays a role in the BSCR. All of the hop1-K593A phenotypes can be bypassed by fusion of ectopic dimerization domains to Mek1, suggesting that the function of the C domain is to promote Mek1 dimerization. Hop1 is a DSB-dependent phosphoprotein, whose phosphorylation requires the presence of the C domain, but is independent of MEK1. These results suggest a model in which Hop1 phosphorylation in response to DSBs triggers dimerization of Mek1 via the Hop1 C domain, thereby enabling Mek1 to phosphorylate target proteins that prevent repair of DSBs by sister chromatids. Œ 2005 by The American Society for Cell Biology.
AB - Meiotic recombination differs from mitotic recombination in that DSBs are repaired using homologous chromosomes, rather than sister chromatids. This change in partner choice is due in part to a barrier to sister chromatid repair (BSCR) created by the meiosis-specific kinase, Mek1, in a complex with two other meiosis-specific proteins, Hop1 and Red1. HOP1 contains two functional domains, called the N and C domains. Analysis of a point mutation that specifically inactivates the C domain (hop1-K593A) reveals that the N domain is sufficient for Hop1 localization to chromosomes and for Red1 and Hop1 interactions. The C domain is needed for spore viability, for chromosome synapsis, and for preventing DMC1-independent DSB repair, indicating it plays a role in the BSCR. All of the hop1-K593A phenotypes can be bypassed by fusion of ectopic dimerization domains to Mek1, suggesting that the function of the C domain is to promote Mek1 dimerization. Hop1 is a DSB-dependent phosphoprotein, whose phosphorylation requires the presence of the C domain, but is independent of MEK1. These results suggest a model in which Hop1 phosphorylation in response to DSBs triggers dimerization of Mek1 via the Hop1 C domain, thereby enabling Mek1 to phosphorylate target proteins that prevent repair of DSBs by sister chromatids. Œ 2005 by The American Society for Cell Biology.
M3 - Article
SN - 1059-1524
VL - 16
SP - 5804
EP - 5818
JO - Molecular Biology of the Cell
JF - Molecular Biology of the Cell
IS - 12
ER -