TY - JOUR
T1 - Pedogenesis at the coastal arid-hyperarid transition deduced from a Late Quaternary chronosequence at Paposo, Atacama Desert
AU - Walk, Janek
AU - Schulte, Philipp
AU - Bartz, Melanie
AU - Binnie, Ariane
AU - Kehl, Martin
AU - Mörchen, Ramona
AU - Sun, Xiaolei
AU - Stauch, Georg
AU - Tittmann, Christopher
AU - Bol, Roland
AU - Brückner, Helmut
AU - Lehmkuhl, Frank
N1 - © 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND licence.
PY - 2023/7
Y1 - 2023/7
N2 - Under hyperarid climate conditions, pedogenesis is driven by the atmospheric deposition and subsequent accumulation of easily to moderately soluble salts forming extreme types of Aridisols. In contrast, the processes and timescales of soil formation in coastal desert environments are as yet not well understood. Therefore, a soil chronosequence at the arid-hyperarid transition in the south-central coastal Atacama Desert is investigated. We measured physicochemical soil parameters of shallow soil profiles on four generations of a multi-stage alluvial fan system, assisted by micromorphological analysis, allowing to deduce the soil-forming processes. We further established a geochronological framework by applying
10Be cosmogenic nuclide exposure dating on the abandoned surface generations, which allowed to infer the timescales for soil formation. The results indicate initial yet clearly identifiable pedogenesis occurring since MIS 5e–c. Along the Late Quaternary chronosequence, physicochemical soil properties show decreasing trends with growing age for the median grain size, salinity, long-term pH development, and CaCO
3 contents. Contrarily, organic carbon, the ratio of organic to total phosphorus, the redness, and the contents of total and poorly crystalline pedogenic iron oxides tend to increase with age. This provides evidence for soil formation under an arid to hyperarid coastal climate characterized by (i) redistribution of salts by leaching causing topsoil desalinization; (ii) decalcification coupled with (iii) dealkalinization in totally decalcified horizons; (iv) accumulation of soil organic matter; (v) initial rubification through formation of pedogenic iron oxides (i.e. hematite); and (vi) initial loamification that, in turn, might have impeding effects on the translocation of soil constituents on timescales larger than 10
5 a. Furthermore, in situ pedogenesis might be superimposed considerably by aeolian dust influx. At Atacama's south-central coast, the state of pedogenic alteration scales with the cumulative precipitation received throughout the entire Late Quaternary, yet evolved strongest between MIS 5 and the MIS 4/3-transition.
AB - Under hyperarid climate conditions, pedogenesis is driven by the atmospheric deposition and subsequent accumulation of easily to moderately soluble salts forming extreme types of Aridisols. In contrast, the processes and timescales of soil formation in coastal desert environments are as yet not well understood. Therefore, a soil chronosequence at the arid-hyperarid transition in the south-central coastal Atacama Desert is investigated. We measured physicochemical soil parameters of shallow soil profiles on four generations of a multi-stage alluvial fan system, assisted by micromorphological analysis, allowing to deduce the soil-forming processes. We further established a geochronological framework by applying
10Be cosmogenic nuclide exposure dating on the abandoned surface generations, which allowed to infer the timescales for soil formation. The results indicate initial yet clearly identifiable pedogenesis occurring since MIS 5e–c. Along the Late Quaternary chronosequence, physicochemical soil properties show decreasing trends with growing age for the median grain size, salinity, long-term pH development, and CaCO
3 contents. Contrarily, organic carbon, the ratio of organic to total phosphorus, the redness, and the contents of total and poorly crystalline pedogenic iron oxides tend to increase with age. This provides evidence for soil formation under an arid to hyperarid coastal climate characterized by (i) redistribution of salts by leaching causing topsoil desalinization; (ii) decalcification coupled with (iii) dealkalinization in totally decalcified horizons; (iv) accumulation of soil organic matter; (v) initial rubification through formation of pedogenic iron oxides (i.e. hematite); and (vi) initial loamification that, in turn, might have impeding effects on the translocation of soil constituents on timescales larger than 10
5 a. Furthermore, in situ pedogenesis might be superimposed considerably by aeolian dust influx. At Atacama's south-central coast, the state of pedogenic alteration scales with the cumulative precipitation received throughout the entire Late Quaternary, yet evolved strongest between MIS 5 and the MIS 4/3-transition.
KW - South America
KW - Pacific Coast
KW - Desert soils
KW - Pedogenic processes
KW - Chronosequences
KW - Exposure age
UR - http://www.scopus.com/inward/record.url?scp=85156259413&partnerID=8YFLogxK
U2 - 10.1016/j.catena.2023.107171
DO - 10.1016/j.catena.2023.107171
M3 - Article
SN - 0341-8162
VL - 228
JO - CATENA
JF - CATENA
M1 - 107171
ER -