Perturbation and spectral theory for singular indefinite Sturm–Liouville operators

Jussi Behrndt, Philipp Schmitz, Gerald Teschl, Carsten Trunk

Veröffentlichungen: Beitrag in FachzeitschriftArtikelPeer Reviewed

Abstract

We study singular Sturm–Liouville operators of the form [Formula presented] in L2((a,b);rj) with endpoints a and b in the limit point case, where, in contrast to the usual assumptions, the weight functions rj have different signs near a and b. In this situation the associated maximal operators become self-adjoint with respect to indefinite inner products and their spectral properties differ essentially from the Hilbert space situation. We investigate the essential spectra and accumulation properties of nonreal and real discrete eigenvalues; we emphasize that here also perturbations of the indefinite weights rj are allowed. Special attention is paid to Kneser type results in the indefinite setting and to L1 perturbations of periodic operators.

OriginalspracheEnglisch
Seiten (von - bis)151-178
Seitenumfang28
FachzeitschriftJournal of Differential Equations
Jahrgang405
DOIs
PublikationsstatusVeröffentlicht - 5 Okt. 2024

ÖFOS 2012

  • 101002 Analysis

Fingerprint

Untersuchen Sie die Forschungsthemen von „Perturbation and spectral theory for singular indefinite Sturm–Liouville operators“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitationsweisen