Abstract
We consider the two-dimensional Helmholtz equation with constant coefficients on a domain with piecewise analytic boundary, modelling the scattering of acoustic waves at a sound-soft obstacle. Our discretisation relies on the Trefftz-discontinuous Galerkin approach with plane wave basis functions on meshes with very general element shapes, geometrically graded towards domain corners. We prove exponential convergence of the discrete solution in terms of number of unknowns.
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 637–675 |
Seitenumfang | 39 |
Fachzeitschrift | Foundations of Computational Mathematics |
Jahrgang | 16 |
Ausgabenummer | 3 |
DOIs | |
Publikationsstatus | Veröffentlicht - Juni 2016 |
ÖFOS 2012
- 101014 Numerische Mathematik