Plane Wave Discontinuous Galerkin Methods: Exponential Convergence of the hp-Version

R. Hiptmair, A. Moiola, I. Perugia

Veröffentlichungen: Beitrag in FachzeitschriftArtikelPeer Reviewed

Abstract

We consider the two-dimensional Helmholtz equation with constant coefficients on a domain with piecewise analytic boundary, modelling the scattering of acoustic waves at a sound-soft obstacle. Our discretisation relies on the Trefftz-discontinuous Galerkin approach with plane wave basis functions on meshes with very general element shapes, geometrically graded towards domain corners. We prove exponential convergence of the discrete solution in terms of number of unknowns.
OriginalspracheEnglisch
Seiten (von - bis)637–675
Seitenumfang39
FachzeitschriftFoundations of Computational Mathematics
Jahrgang16
Ausgabenummer3
DOIs
PublikationsstatusVeröffentlicht - Juni 2016

ÖFOS 2012

  • 101014 Numerische Mathematik

Zitationsweisen