Position Paper: Dataset profiling for un-Linked Data

Emilia Kacprzak, Laura Koesten, Tom Heath, Jeni Tennison

Veröffentlichungen: Beitrag zu KonferenzPaperPeer Reviewed

Abstract

The vast amount of data on the web presents a growing need to advance data search. Rich and meaningful metadata can enhance the discovery of datasets and establish connections between them. Where metadata is not comprehensive, it can be expanded through dataset profiling. The relative importance of different types of profiles varies depending on the user’s context and the objective of the task. We discuss an approach to find un-Linked datasets and increase result relevance by offering related information. We propose generating rich profiles for datasets; counting the number and strength of relations between them
and showing a graph of profiles that represents connections between different datasets. We can thereby capture correlations between datasets that can then improve the efficiency and effectiveness of data search. If developed further this would improve discoverability and reusability of datasets.
OriginalspracheEnglisch
Seitenumfang6
PublikationsstatusVeröffentlicht - 2016
Extern publiziertJa
Veranstaltung3rd International Workshop on Dataset PROFIling and fEderated Search for Linked Data, PROFILES 2016 - Anissaras, Griechenland
Dauer: 30 Mai 2016 → …

Konferenz

Konferenz3rd International Workshop on Dataset PROFIling and fEderated Search for Linked Data, PROFILES 2016
Land/GebietGriechenland
OrtAnissaras
Zeitraum30/05/16 → …

ÖFOS 2012

  • 102013 Human-Computer Interaction

Fingerprint

Untersuchen Sie die Forschungsthemen von „Position Paper: Dataset profiling for un-Linked Data“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitationsweisen