Predicting high-quality movements in post-stroke motor rehabilitation from EEG

Philipp Raggam, Christoph Zrenner, Eric J. McDermott, Ulf Ziemann, Moritz Grosse-Wentrup

Veröffentlichungen: Beitrag zu KonferenzSonstiger KonferenzbeitragPeer Reviewed

Abstract

A promising new concept for post-stroke motor rehabilitation is using EEG-based brain-computer interface (BCI) systems, e.g., providing patients with EEG-based feedback on their decoded movement intent. Here, we explore the possibility of extending BCI-based rehabilitation paradigms from decoding movement intent to decoding movement quality. Toward this goal, we study whether the quality of hand opening and closing movements in stroke patients with arm and hand spasticity can be decoded from their EEG.
OriginalspracheEnglisch
PublikationsstatusVeröffentlicht - 6 Juni 2023
Veranstaltung10th International BCI Meeting - Sonian Forest, Brussels, Belgien
Dauer: 6 Juni 20239 Juni 2023
https://bcisociety.org/bci-meeting/

Konferenz

Konferenz10th International BCI Meeting
Land/GebietBelgien
OrtBrussels
Zeitraum6/06/239/06/23
Internetadresse

ÖFOS 2012

  • 301401 Hirnforschung
  • 102001 Artificial Intelligence

Fingerprint

Untersuchen Sie die Forschungsthemen von „Predicting high-quality movements in post-stroke motor rehabilitation from EEG“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitationsweisen