Predicting Residence Time and Drug Unbinding Pathway through Scaled Molecular Dynamics

Doris A. Schuetz, Mattia Bernetti, Martina Bertazzo, Djordje Musil, Hans Michael Eggenweiler, Maurizio Recanatini, Matteo Masetti (Korresp. Autor*in), Gerhard F. Ecker, Andrea Cavalli (Korresp. Autor*in)

    Veröffentlichungen: Beitrag in FachzeitschriftArtikelPeer Reviewed

    Abstract

    Computational approaches currently assist medicinal chemistry through the entire drug discovery pipeline. However, while several computational tools and strategies are available to predict binding affinity, predicting the drug-target binding kinetics is still a matter of ongoing research. Here, we challenge scaled molecular dynamics simulations to assess the off-rates for a series of structurally diverse inhibitors of the heat shock protein 90 (Hsp90) covering 3 orders of magnitude in their experimental residence times. The derived computational predictions are in overall good agreement with experimental data. Aside from the estimation of exit times, unbinding pathways were assessed through dimensionality reduction techniques. The data analysis framework proposed in this work could lead to better understanding of the mechanistic aspects related to the observed kinetic behavior.

    OriginalspracheEnglisch
    Seiten (von - bis)535-549
    Seitenumfang15
    FachzeitschriftJournal of Chemical Information and Modeling
    Jahrgang59
    Ausgabenummer1
    DOIs
    PublikationsstatusVeröffentlicht - 28 Jan. 2019

    ÖFOS 2012

    • 301207 Pharmazeutische Chemie

    Zitationsweisen