TY - JOUR
T1 - Quantized Tensor FEM for Multiscale Problems: Diffusion Problems in Two and Three Dimensions
AU - Kazeev, Vladimir
AU - Oseledets, Ivan
AU - Rakhuba, Maxim
AU - Schwab, Christoph
N1 - Publisher Copyright:
© 2022 Society for Industrial and Applied Mathematics.
PY - 2022/7/28
Y1 - 2022/7/28
N2 - Homogenization in terms of multiscale limits transforms a multiscale problem with n + 1 asymptotically separated microscales posed on a physical domain D ⊂ R
d into a one-scale problem posed on a product domain of dimension (n + 1)d by introducing n so-called fast variables. This procedure allows one to convert n + 1 scales in d physical dimensions into a single-scale structure in (n + 1)d dimensions. We prove here that both the original, physical multiscale problem and the corresponding high-dimensional, one-scale limiting problem can be efficiently treated numerically with the recently developed quantized tensor-train finite-element method (QTT-FEM). The QTT-FE approximation consists in restricting approximation and computation to sequences of nested subspaces, each of which is a tensor product of two factors of low dimension (rank), within a vast, but generic “virtual” (background) discretization space. In practice, these subspaces are determined iteratively and data-adaptively at runtime bypassing any “offline precomputation.” For theoretical analysis, low-dimensional subspaces are constructed analytically to bound the tensor ranks against the error tolerance. We consider a model linear elliptic multiscale problem in several physical dimensions and show, theoretically and experimentally, that both (i) the solution of the associated high-dimensional one-scale problem and (ii) the approximation to the solution of the multiscale problem induced thereby admit efficient QTT-FE approximations. These problems can therefore be numerically solved in a scale-robust fashion by standard (low-order) PDE discretizations combined with state-of-the-art general-purpose solvers for tensor-structured linear systems. Specifically, we prove the existence of QTT-FE approximations with an upper bound on the tensor ranks growing no faster than algebraically with respect to log ∊
−
1 and independent of the scale parameters, where ∊ is the target accuracy for the approximation of the solution and of its gradient. In numerical experiments, we verify the theoretical rank bounds and computationally investigate the dependence of the complexity of the solutions on the number n of microscales.
AB - Homogenization in terms of multiscale limits transforms a multiscale problem with n + 1 asymptotically separated microscales posed on a physical domain D ⊂ R
d into a one-scale problem posed on a product domain of dimension (n + 1)d by introducing n so-called fast variables. This procedure allows one to convert n + 1 scales in d physical dimensions into a single-scale structure in (n + 1)d dimensions. We prove here that both the original, physical multiscale problem and the corresponding high-dimensional, one-scale limiting problem can be efficiently treated numerically with the recently developed quantized tensor-train finite-element method (QTT-FEM). The QTT-FE approximation consists in restricting approximation and computation to sequences of nested subspaces, each of which is a tensor product of two factors of low dimension (rank), within a vast, but generic “virtual” (background) discretization space. In practice, these subspaces are determined iteratively and data-adaptively at runtime bypassing any “offline precomputation.” For theoretical analysis, low-dimensional subspaces are constructed analytically to bound the tensor ranks against the error tolerance. We consider a model linear elliptic multiscale problem in several physical dimensions and show, theoretically and experimentally, that both (i) the solution of the associated high-dimensional one-scale problem and (ii) the approximation to the solution of the multiscale problem induced thereby admit efficient QTT-FE approximations. These problems can therefore be numerically solved in a scale-robust fashion by standard (low-order) PDE discretizations combined with state-of-the-art general-purpose solvers for tensor-structured linear systems. Specifically, we prove the existence of QTT-FE approximations with an upper bound on the tensor ranks growing no faster than algebraically with respect to log ∊
−
1 and independent of the scale parameters, where ∊ is the target accuracy for the approximation of the solution and of its gradient. In numerical experiments, we verify the theoretical rank bounds and computationally investigate the dependence of the complexity of the solutions on the number n of microscales.
KW - data-driven discretization
KW - low-rank approximation
KW - low-rank tensors
KW - matrix product states
KW - multilevel structure
KW - multiscale problems
KW - tensor train
UR - http://www.scopus.com/inward/record.url?scp=85140196363&partnerID=8YFLogxK
U2 - 10.1137/20M1341659
DO - 10.1137/20M1341659
M3 - Article
SN - 1540-3459
VL - 20
SP - 893
EP - 935
JO - Multiscale Modeling and Simulation
JF - Multiscale Modeling and Simulation
IS - 3
ER -