TY - JOUR
T1 - Random embeddings with an almost Gaussian distortion
AU - Bartl, Daniel
AU - Mendelson, Shahar
N1 - Publisher Copyright:
© 2022 Elsevier Inc.
PY - 2022/5/14
Y1 - 2022/5/14
N2 - Let $X$ be a symmetric, isotropic random vector in $\mathbb{R}^m$ and let $X_1...,X_n$ be independent copies of $X$. We show that under mild assumptions on $\|X\|_2$ (a suitable thin-shell bound) and on the tail-decay of the marginals $\langle X,u\rangle$, the random matrix $A$, whose columns are $X_i/\sqrt{m}$ exhibits a Gaussian-like behaviour in the following sense: for an arbitrary subset of $T\subset \mathbb{R}^n$, the distortion $\sup_{t \in T} | \|At\|_2^2 - \|t\|_2^2 |$ is almost the same as if $A$ were a Gaussian matrix. A simple outcome of our result is that if $X$ is a symmetric, isotropic, log-concave random vector and $n \leq m \leq c_1(\alpha)n^\alpha$ for some $\alpha>1$, then with high probability, the extremal singular values of $A$ satisfy the optimal estimate: $1-c_2(\alpha) \sqrt{n/m} \leq \lambda_{\rm min} \leq \lambda_{\rm max} \leq 1+c_2(\alpha) \sqrt{n/m}$.
AB - Let $X$ be a symmetric, isotropic random vector in $\mathbb{R}^m$ and let $X_1...,X_n$ be independent copies of $X$. We show that under mild assumptions on $\|X\|_2$ (a suitable thin-shell bound) and on the tail-decay of the marginals $\langle X,u\rangle$, the random matrix $A$, whose columns are $X_i/\sqrt{m}$ exhibits a Gaussian-like behaviour in the following sense: for an arbitrary subset of $T\subset \mathbb{R}^n$, the distortion $\sup_{t \in T} | \|At\|_2^2 - \|t\|_2^2 |$ is almost the same as if $A$ were a Gaussian matrix. A simple outcome of our result is that if $X$ is a symmetric, isotropic, log-concave random vector and $n \leq m \leq c_1(\alpha)n^\alpha$ for some $\alpha>1$, then with high probability, the extremal singular values of $A$ satisfy the optimal estimate: $1-c_2(\alpha) \sqrt{n/m} \leq \lambda_{\rm min} \leq \lambda_{\rm max} \leq 1+c_2(\alpha) \sqrt{n/m}$.
KW - math.FA
KW - math.PR
KW - Almost Gaussian distortion
KW - Random embeddings
UR - http://www.scopus.com/inward/record.url?scp=85125461706&partnerID=8YFLogxK
U2 - https://doi.org/10.1016/j.aim.2022.108261
DO - https://doi.org/10.1016/j.aim.2022.108261
M3 - Article
VL - 400
JO - Advances in Mathematics
JF - Advances in Mathematics
SN - 0001-8708
M1 - 108261
ER -