Redistributor: Transforming Empirical Data Distributions

Veröffentlichungen: Working PaperPreprint

Abstract

We present an algorithm and package, Redistributor, which forces a collection of scalar samples to follow a desired distribution. When given independent and identically distributed samples of some random variable S and the continuous cumulative distribution function of some desired target T, it provably produces a consistent estimator of the transformation R which satisfies R(S)=T in distribution. As the distribution of S or T may be unknown, we also include algorithms for efficiently estimating these distributions from samples. This allows for various interesting use cases in image processing, where Redistributor serves as a remarkably simple and easy-to-use tool that is capable of producing visually appealing results. The package is implemented in Python and is optimized to efficiently handle large data sets, making it also suitable as a preprocessing step in machine learning. The source code is available at https://gitlab.com/paloha/redistributor.
OriginalspracheEnglisch
Herausgeber*inarXiv
DOIs
PublikationsstatusElektronische Veröffentlichung vor Drucklegung - 25 Okt. 2022

ÖFOS 2012

  • 102003 Bildverarbeitung
  • 202037 Signalverarbeitung

Fingerprint

Untersuchen Sie die Forschungsthemen von „Redistributor: Transforming Empirical Data Distributions“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitationsweisen