Robust Adaptive $hp$ Discontinuous Galerkin Finite Element Methods for the Helmholtz Equation

Scott Congreve, Joscha Gedicke, Ilaria Perugia

Veröffentlichungen: Beitrag in FachzeitschriftArtikelPeer Reviewed

Abstract

This paper presents an $hp$ a posteriori error analysis for the 2D Helmholtz equation that is robust in the polynomial degree $p$ and the wave number $k$. For the discretization, we consider a discontinuous Galerkin formulation that is unconditionally well posed. The a posteriori error analysis is based on the technique of equilibrated fluxes applied to a shifted Poisson problem, with the error due to the nonconformity of the discretization controlled by a potential reconstruction. We prove that the error estimator is both reliable and efficient, under the condition that the initial mesh size and polynomial degree is chosen such that the discontinuous Galerkin formulation converges, i.e. it is out of the regime of pollution. We confirm the efficiency of an $hp$-adaptive refinement strategy based on the presented robust a posteriori error estimator via several numerical examples.
OriginalspracheEnglisch
Seiten (von - bis)A1121–A1147
Seitenumfang27
FachzeitschriftJournal of Scientific Computing
Jahrgang41
Ausgabenummer2
Frühes Online-Datum11 Apr. 2019
DOIs
PublikationsstatusVeröffentlicht - 2019

ÖFOS 2012

  • 101014 Numerische Mathematik

Zitationsweisen