Abstract
In this paper we study a robust expected utility maximization problem with random endowment in discrete time. We give conditions under which an optimal strategy exists and derive a dual representation for the optimal utility. Our approach is based on a general representation result for monotone convex functionals, a functional version of Choquet's capacitability theorem and medial limits. The novelty is that it works under nondominated model uncertainty without any assumptions of time-consistency. As applications, we discuss robust utility maximization problems with moment constraints, Wasserstein constraints and Wasserstein penalties.
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 752-775 |
Seitenumfang | 24 |
Fachzeitschrift | Journal of Mathematical Analysis and Applications |
Jahrgang | 471 |
Ausgabenummer | 1-2 |
DOIs | |
Publikationsstatus | Veröffentlicht - März 2019 |
ÖFOS 2012
- 101024 Wahrscheinlichkeitstheorie
- 101007 Finanzmathematik
- 101019 Stochastik