Projekte pro Jahr
Abstract
We introduce two families of generators (functions) $G$ that consist of entire and meromorphic functions enjoying a certain periodicity property and contain the classical Gaussian and hyperbolic secant generators. Sharp results are proved on the density of separated sets that provide non-uniform sampling for the shift-invariant and quasi shift-invariant spaces generated by elements of these families.
As an application, we obtain new sharp results on the density of semi-regular lattices for the Gabor frames generated by elements from these families.
As an application, we obtain new sharp results on the density of semi-regular lattices for the Gabor frames generated by elements from these families.
Originalsprache | Englisch |
---|---|
Seitenumfang | 26 |
DOIs | |
Publikationsstatus | Veröffentlicht - 6 Feb. 2024 |
ÖFOS 2012
- 101002 Analysis
- 101008 Funktionentheorie
- 101032 Funktionalanalysis
- 101031 Approximationstheorie
Fingerprint
Untersuchen Sie die Forschungsthemen von „Sampling in quasi shift-invariant spaces and Gabor frames generated by ratios of exponential polynomials: On Gabor frames generated by ratios of exponential polynomials“. Zusammen bilden sie einen einzigartigen Fingerprint.Projekte
- 1 Laufend
Aktivitäten
- 2 Vortrag
-
Sampling theorems in (quasi) shift-invariant spaces generated by ratios of exponential polynomials(based on joint paper with A. Ulanovskii)
Ilia Zlotnikov (Vortragende*r)
29 Mai 2024Aktivität: Vorträge › Vortrag › Science to Science
-
New sharp sampling theorems in (quasi) shift-invariant spaces (based on joint papers with A. Ulanovskii and J.L. Romero)
Ilia Zlotnikov (Vortragende*r)
11 Apr. 2024Aktivität: Vorträge › Vortrag › Science to Science
Publikationen
- 1 Artikel
-
Sampling in quasi shift-invariant spaces and Gabor frames generated by ratios of exponential polynomials
Ulanovskii, A. & Zlotnikov, I., 4 Okt. 2024, in: Mathematische Annalen. 28 S.Veröffentlichungen: Beitrag in Fachzeitschrift › Artikel › Peer Reviewed
Open Access