Sampling in quasi shift-invariant spaces and Gabor frames generated by ratios of exponential polynomials

Alexander Ulanovskii, Ilia Zlotnikov (Korresp. Autor*in)

Veröffentlichungen: Beitrag in FachzeitschriftArtikelPeer Reviewed

Abstract

We introduce two families of generators (functions) $\Ff$ that consist of entire and meromorphic functions enjoying a certain periodicity property and contain the classical Gaussian and hyperbolic secant generators. Sharp results are proved on the density of separated sets that provide non-uniform sampling for the shift-invariant and quasi shift-invariant spaces generated by elements of these families.
As an application, new sharp results are obtained on the density of semi-regular lattices for the Gabor frames generated by elements from these families.
OriginalspracheEnglisch
Seitenumfang28
FachzeitschriftMathematische Annalen
DOIs
PublikationsstatusVeröffentlicht - 4 Okt. 2024

ÖFOS 2012

  • 101031 Approximationstheorie
  • 101002 Analysis
  • 101008 Funktionentheorie

Fingerprint

Untersuchen Sie die Forschungsthemen von „Sampling in quasi shift-invariant spaces and Gabor frames generated by ratios of exponential polynomials“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitationsweisen