Projekte pro Jahr
Abstract
We introduce two families of generators (functions) $\Ff$ that consist of entire and meromorphic functions enjoying a certain periodicity property and contain the classical Gaussian and hyperbolic secant generators. Sharp results are proved on the density of separated sets that provide non-uniform sampling for the shift-invariant and quasi shift-invariant spaces generated by elements of these families.
As an application, new sharp results are obtained on the density of semi-regular lattices for the Gabor frames generated by elements from these families.
As an application, new sharp results are obtained on the density of semi-regular lattices for the Gabor frames generated by elements from these families.
Originalsprache | Englisch |
---|---|
Seitenumfang | 28 |
Fachzeitschrift | Mathematische Annalen |
DOIs | |
Publikationsstatus | Veröffentlicht - 4 Okt. 2024 |
ÖFOS 2012
- 101031 Approximationstheorie
- 101002 Analysis
- 101008 Funktionentheorie
Fingerprint
Untersuchen Sie die Forschungsthemen von „Sampling in quasi shift-invariant spaces and Gabor frames generated by ratios of exponential polynomials“. Zusammen bilden sie einen einzigartigen Fingerprint.Projekte
- 1 Laufend
Publikationen
- 1 Preprint
-
Sampling in quasi shift-invariant spaces and Gabor frames generated by ratios of exponential polynomials: On Gabor frames generated by ratios of exponential polynomials
Ulanovskii, A. & Zlotnikov, I., 6 Feb. 2024, 26 S.Veröffentlichungen: Working Paper › Preprint
Open Access