Sampling in the shift-invariant space generated by the bivariate Gaussian function

Jose Luis Romero, Alexander Ulanovskii, Ilia Zlotnikov (Korresp. Autor*in)

Veröffentlichungen: Beitrag in FachzeitschriftArtikelPeer Reviewed

Abstract

We study the space spanned by the integer shifts of a bivariate Gaussian function and the problem of reconstructing any function in that space from samples scattered across the plane. We identify a large class of lattices, or more generally semi-regular sampling patterns spread along parallel lines, that lead to stable reconstruction while having densities close to the critical value given by Landau's limit. At the critical density, we construct examples of sampling patterns for which reconstruction fails.

In the same vein, we also investigate continuous sampling along non-uniformly scattered families of parallel lines and identify the threshold density of line configurations at which reconstruction is possible. In a remarkable contrast with Paley-Wiener spaces, the results are completely different for lines with rational or irrational slopes.

Finally, we apply the sampling results to Gabor systems with bivariate Gaussian windows. As a main contribution, we provide a large list of new examples of Gabor frames with non-complex lattices having volume close to 1.
OriginalspracheEnglisch
Aufsatznummer110600
Seitenumfang29
FachzeitschriftJournal of Functional Analysis
Jahrgang287
Ausgabenummer9
DOIs
PublikationsstatusVeröffentlicht - 1 Nov. 2024

ÖFOS 2012

  • 101032 Funktionalanalysis
  • 101031 Approximationstheorie
  • 101002 Analysis

Fingerprint

Untersuchen Sie die Forschungsthemen von „Sampling in the shift-invariant space generated by the bivariate Gaussian function“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitationsweisen