Abstract
We introduce a reinforcement learning based containment system for self-propagating malware in local networks. The system is trained with real-world software and malware and leverages a network of virtual machines for execution and propagation. Instead of relying on labels as is common with supervised learning, we follow a trial-and-error approach in order to learn how to link network traffic to malware infections.
Originalsprache | Englisch |
---|---|
Titel | Machine Learning and Knowledge Extraction |
Erscheinungsort | Cham |
Herausgeber (Verlag) | Springer International Publishing |
Seiten | 35-50 |
Seitenumfang | 16 |
Publikationsstatus | Veröffentlicht - 2021 |
ÖFOS 2012
- 102016 IT-Sicherheit
- 102019 Machine Learning