Self-propagating Malware Containment via Reinforcement Learning

Sebastian Eresheim, Daniel Pasterk

Veröffentlichungen: Beitrag in BuchBeitrag in KonferenzbandPeer Reviewed

Abstract

We introduce a reinforcement learning based containment system for self-propagating malware in local networks. The system is trained with real-world software and malware and leverages a network of virtual machines for execution and propagation. Instead of relying on labels as is common with supervised learning, we follow a trial-and-error approach in order to learn how to link network traffic to malware infections.
OriginalspracheEnglisch
TitelMachine Learning and Knowledge Extraction
ErscheinungsortCham
Herausgeber (Verlag)Springer International Publishing
Seiten35-50
Seitenumfang16
PublikationsstatusVeröffentlicht - 2021

ÖFOS 2012

  • 102016 IT-Sicherheit
  • 102019 Machine Learning

Zitationsweisen