Semiconductor-to-Metal Transition and Quasiparticle Renormalization in Doped Graphene Nanoribbons

Boris V. Senkovskiy (Korresp. Autor*in), Alexander V. Fedorov, Danny Haberer, Mani Farjam, Konstantin A. Simonov, Alexei B. Preobrajenski, Niels Mårtensson, Nicolae Atodiresei, Vasile Caciuc, Stefan Blügel, Achim Rosch, Nikolay I. Verbitskiy, Martin Hell, Daniil V. Evtushinsky, Raphael German, Tomas Marangoni, Paul H.M. van Loosdrecht, Felix R. Fischer (Korresp. Autor*in), Alexander Grüneis

Veröffentlichungen: Beitrag in FachzeitschriftArtikelPeer Reviewed

Abstract

A semiconductor-to-metal transition in N = 7 armchair graphene nanoribbons causes drastic changes in its electron and phonon system. By using angle-resolved photoemission spectroscopy of lithium-doped graphene nanoribbons, a quasiparticle band gap renormalization from 2.4 to 2.1 eV is observed. Reaching high doping levels (0.05 electrons per atom), it is found that the effective mass of the conduction band carriers increases to a value equal to the free electron mass. This giant increase in the effective mass by doping is a means to enhance the density of states at the Fermi level which can have palpable impact on the transport and optical properties. Electron doping also reduces the Raman intensity by one order of magnitude, and results in relatively small (4 cm(-1)) hardening of the G phonon and softening of the D phonon. This suggests the importance of both lattice expansion and dynamic effects. The present work highlights that doping of a semiconducting 1D system is strikingly different from its 2D or 3D counterparts and introduces doped graphene nanoribbons as a new tunable quantum material with high potential for basic research and applications.
OriginalspracheEnglisch
Aufsatznummer1600490
Seitenumfang8
FachzeitschriftAdvanced Electronic Materials
Jahrgang3
Ausgabenummer4
DOIs
PublikationsstatusVeröffentlicht - 1 Apr. 2017

ÖFOS 2012

  • 103020 Oberflächenphysik
  • 103018 Materialphysik
  • 103009 Festkörperphysik

Fingerprint

Untersuchen Sie die Forschungsthemen von „Semiconductor-to-Metal Transition and Quasiparticle Renormalization in Doped Graphene Nanoribbons“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitationsweisen