Skew symplectic and orthogonal characters through lattice paths

Seamus Patrick Albion (Korresp. Autor*in), Ilse Fischer (Korresp. Autor*in), Hans Höngesberg (Korresp. Autor*in), Florian Schreier-Aigner (Korresp. Autor*in)

Veröffentlichungen: Beitrag in FachzeitschriftArtikelPeer Reviewed

Abstract

The skew Schur functions admit many determinantal expressions. Chief among them are the (dual) Jacobi–Trudi formula and the Lascoux–Pragacz formula, the latter being a skew analogue of the Giambelli identity. Comparatively, the skew characters of the symplectic and orthogonal groups, also known as the skew symplectic and orthogonal Schur functions, have received less attention in this direction. We establish analogues of the dual Jacobi–Trudi and Lascoux–Pragacz formulae for these characters. Our approach is entirely combinatorial, being based on lattice path descriptions of the tableaux models of Koike and Terada. Ordinary Jacobi–Trudi formulae are then derived in an algebraic manner from their duals.

OriginalspracheEnglisch
Aufsatznummer104000
Seitenumfang26
FachzeitschriftEuropean Journal of Combinatorics
Jahrgang122
DOIs
PublikationsstatusVeröffentlicht - Dez. 2024

ÖFOS 2012

  • 101012 Kombinatorik

Fingerprint

Untersuchen Sie die Forschungsthemen von „Skew symplectic and orthogonal characters through lattice paths“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitationsweisen