Spatially confined magnetic shape-memory Heuslers: Implications for nanoscale devices

Milad Takhsha (Korresp. Autor*in), Michal Horký, Lucia Nasi, Anna Kosogor, Giovanna Trevisi, Francesca Casoli (Korresp. Autor*in), Jon Ander Arregi, Rosaria Brescia, Vojtěch Uhlíř, Franca Albertini

Veröffentlichungen: Beitrag in FachzeitschriftArtikelPeer Reviewed

Abstract

Magnetic shape-memory (MSM) Heuslers are among the most promising materials for thermo-magneto-mechanical applications. However, the knowledge about the martensitic transformation (which is the basis of the multifunctionality in these materials) as a function of size reduction in the submicron scale is still very limited. Here, we aim to bridge this knowledge gap by investigating the behavior of these materials upon nanoscale confinement. We customize a top-down approach by patterning arrays of submicron epitaxial Ni-Mn-Ga structures with lateral sizes down to ∼70 nm, using a Cr hard mask on MgO(001) substrate. The structures include straight stripes, radial stripes, squares and triangles. The martensitic transformation temperature, sharpness, thermal hysteresis and magnetic characteristics of the material are investigated upon spatial confinement. Transmission electron microscopy techniques including Geometric Phase Analysis (GPA) algorithm, and quantitative theoretical analysis of stress help us to evaluate the martensitic transformation of Ni-Mn-Ga starting from continuous films and down to sub-micron patterns. We show that the size-dependent internal stress relaxation plays a primary role in broadening the martensitic transformation of the material, reducing thermal hysteresis, and pushing the transformation toward higher temperatures in the sub-micron structures. These findings highlight the importance of stress considerations upon incorporation of MSM Heusler materials into nanoscale functional devices.
OriginalspracheEnglisch
Aufsatznummer120579
Seitenumfang11
FachzeitschriftActa Materialia
Jahrgang284
DOIs
PublikationsstatusVeröffentlicht - 1 Jan. 2025

ÖFOS 2012

  • 103015 Kondensierte Materie
  • 103018 Materialphysik

Fingerprint

Untersuchen Sie die Forschungsthemen von „Spatially confined magnetic shape-memory Heuslers: Implications for nanoscale devices“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitationsweisen