Specifying Prior Beliefs over DAGs in Deep Bayesian Causal Structure Learning

Veröffentlichungen: Beitrag in BuchBeitrag in KonferenzbandPeer Reviewed

Abstract

We consider the principled incorporation of prior knowledge in deep learning based Bayesian approaches to causal structure learning via the prior belief. In particular, we investigate how to include knowledge about individual edges and causal dependencies in the prior over the underlying directed acyclic graph (DAG). While conceptually simple, substantial challenges arise because the acyclicity of a DAG limits the modeling choices of the marginal distributions over its edges. Specifying the marginals iteratively unveils their dependencies and ensures a sound formulation of the probability distribution over DAGs. We provide recipes for formulating valid priors over DAGs for two recent deep learning based Bayesian approaches to causal structure learning and demonstrate empirically that using this prior knowledge can enable significantly more sample-efficient causal structure search.
OriginalspracheEnglisch
TitelECAI 2023
Untertitel26th European Conference on Artificial Intelligence, including 12th Conference on Prestigious Applications of Intelligent Systems, PAIS 2023 - Proceedings
Redakteure*innenKobi Gal, Kobi Gal, Ann Nowe, Grzegorz J. Nalepa, Roy Fairstein, Roxana Radulescu
ErscheinungsortAmsterdam
Herausgeber (Verlag)IOS Press
Seiten1962-1969
Seitenumfang8
ISBN (elektronisch)978-1-64368-437-6
ISBN (Print)9781643684369
DOIs
PublikationsstatusVeröffentlicht - 30 Sept. 2023

Publikationsreihe

ReiheFrontiers in Artificial Intelligence and Applications
Band372
ISSN0922-6389

ÖFOS 2012

  • 102001 Artificial Intelligence

Fingerprint

Untersuchen Sie die Forschungsthemen von „Specifying Prior Beliefs over DAGs in Deep Bayesian Causal Structure Learning“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitationsweisen