Spin-orbital Jahn-Teller bipolarons

Lorenzo Celiberti, Dario Fiore Mosca, Giuseppe Allodi, Leonid V. Pourovskii, Anna Tassetti, Paola Caterina Forino, Rong Cong, Erick Garcia, Phuong M. Tran, Roberto De Renzi, Patrick M. Woodward, Vesna F. Mitrović, Samuele Sanna, Cesare Franchini (Korresp. Autor*in)

Veröffentlichungen: Beitrag in FachzeitschriftArtikelPeer Reviewed

Abstract

Polarons and spin-orbit (SO) coupling are distinct quantum effects that play a critical role in charge transport and spin-orbitronics. Polarons originate from strong electron-phonon interaction and are ubiquitous in polarizable materials featuring electron localization, in particular $\mathrm{3d}$ transition metal oxides (TMOs). On the other hand, the relativistic coupling between the spin and orbital angular momentum is notable in lattices with heavy atoms and develops in $\mathrm{5d}$ TMOs, where electrons are spatially delocalized. Here we combine ab initio calculations and magnetic measurements to show that these two seemingly mutually exclusive interactions are entangled in the electron-doped SO-coupled Mott insulator $\mathrm{Ba_2Na_{1-x}Ca_xOsO_6}$ ($0< x < 1$), unveiling the formation of spin-orbital bipolarons. Polaron charge trapping, favoured by the Jahn-Teller lattice activity, converts the Os $\mathrm{5d^1}$ spin-orbital $\mathrm{J_{eff}=3/2}$ levels, characteristic of the parent compound $\mathrm{Ba_2NaOsO_6}$ (BNOO), into a bipolaron $\mathrm{5d^2}$ $\mathrm{J_{eff}=2}$ manifold, leading to the coexistence of different J-effective states in a single-phase material. The gradual increase of bipolarons with increasing doping creates robust in-gap states that prevents the transition to a metal phase even at ultrahigh doping, thus preserving the Mott gap across the entire doping range from $\mathrm{d^1}$ BNOO to $\mathrm{d^2}$ $\mathrm{Ba_2CaOsO_6}$ (BCOO).
OriginalspracheEnglisch
Aufsatznummer2429
Seitenumfang9
FachzeitschriftNature Communications
Jahrgang15
Frühes Online-Datum27 Juni 2023
DOIs
PublikationsstatusVeröffentlicht - 18 März 2024

ÖFOS 2012

  • 103009 Festkörperphysik

Zitationsweisen