Projekte pro Jahr
Abstract
Knowledge of the spin-wave dispersion relation is a prerequisite for the explanation of many magnonic phenomena as well as for the practical design of magnonic devices. Spin-wave dispersion measurement by established optical techniques such as Brillouin light scattering or the magneto-optical Kerr effect at ultralow temperatures is often forbiddingly complicated. By contrast, microwave spectroscopy can be used at all temperatures but it usually lacks spatial and wave-number resolution. Here we develop a variable-gap-propagating-spin-wave-spectroscopy (VGPSWS) method for the deduction of the dispersion relation of spin waves in a wide frequency and wave-number range. The method is based on the phase-resolved analysis of the spin-wave transmission between two antennas with variable spacing, in conjunction with theoretical data treatment. We validate the method for in-plane magnetized Co-Fe-B and yttrium iron garnet thin films in 𝐤⊥𝐁 and 𝐤∥𝐁 geometries by deducing the full set of material and spin-wave parameters, including spin-wave dispersion, hybridization of the fundamental mode with the higher-order perpendicular standing spin-wave modes, and surface spin pinning. The compatibility of microwaves with low temperatures makes this approach attractive for cryogenic magnonics at the nanoscale.
Originalsprache | Englisch |
---|---|
Aufsatznummer | 054033 |
Seitenumfang | 10 |
Fachzeitschrift | Physical Review Applied |
Jahrgang | 16 |
Ausgabenummer | 5 |
DOIs | |
Publikationsstatus | Veröffentlicht - 17 Nov. 2021 |
ÖFOS 2012
- 103015 Kondensierte Materie
- 103018 Materialphysik
Projekte
- 2 Abgeschlossen
-
CurviMag: Krümmungsinduzierte Effekte in magnetischen Nanostrukturen
Dobrovolskiy, O. & Chumak, A.
1/01/21 → 31/12/23
Projekt: Forschungsförderung
-
Nanometer-dicke YIG-Funktionsschichten und Mikrostrukturen
Chumak, A., Levchenko, K. & Knauer, S.
1/10/19 → 30/09/22
Projekt: Forschungsförderung