Abstract
Consider the map~$T\mapsto\omega (T)$ on the
collection of unimodal transformations, where $\omega (T)$
is the $\omega$-limit set of~$T$. The collection
of unimodal transformations is endowed with the topology of
uniform convergence, and the collection of
subsets of~$[0,1]$ is endowed with the Hausdorff
metric. Conditions on a unimodal transformation~$T$
implying the continuity of the
map~$S\mapsto\omega (S)$ at~$T$ are
investigated.
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 955-966 |
Seitenumfang | 12 |
Fachzeitschrift | Nonlinearity |
Jahrgang | 22 |
Publikationsstatus | Veröffentlicht - 2009 |
ÖFOS 2012
- 1010 Mathematik